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Abstract— With the goal of developing low-cost and inno-
vative perception and localization techniques for autonomous
vehicles, this work explores a system that solely relies on a
LoRa receiver and a magnetometer for agent localization within
urban environments. Using the received signal strength from
LoRa beacons distributed across a test area of 16,000 square
meters, a model of expected RSSI values per beacon is estimated
using Gaussian Process (GP) regression. Motion is estimated
using a probabilistic signal similarity classifier, and localization
is obtained via a particle filter. Our experiments demonstrate
that our proposed system is able to estimate our location to
within three meters RMSE when the agent is within the convex
hull of prior data. In real-world scenarios, characterized by sig-
nal interference and environmental complexities, our approach
highlights the potential of leveraging affordable technology
such as LoRa receivers and magnetometers for robust and
accurate location estimation in complex urban environments.
The integration of low-cost LoRa devices, Gaussian Process
regression, particle filtering and our novel signal similarity
motion estimator offers a promising avenue for achieving cost-
effective localization solutions without compromising accuracy
or reliability.

I. INTRODUCTION

Many approaches to localize autonomous vehicles include
the use of cameras, LiIDAR, and GPS sensors. These sensors,
albeit very common, vary in accuracy depending on cost and
often require an extensive prior map. GPS, on the other hand,
offers a direct global positioning solution, but accuracy is
compromised in urban landscapes due to obstructed satellite
views, multipath signal propagation, and signal fading. This
phenomenon is particularly pronounced in densely populated
areas or urban canyons where GPS accuracy is often severely
degraded.

In an effort to address these challenges, state estimator
solutions typically fuse odometry with multiple additional
sensors to obtain robust position estimates. Encoders are
a popular method for estimating odometry for wheeled
robots. By measuring rotational motion directly from the
wheels, encoders provide accurate pose estimation over short
intervals. However, their utility is limited to wheeled robots,
relying on well-defined wheel parameters and consistent,
smooth movement. This constraint excludes other mobile
robot types such as legged, aerial or marine platforms, as
well as handheld devices, which lack the necessary kinematic
characteristics for encoder-based odometry.

Besides GPS, other wireless signals are naturally present
in urban environments that can be used to localize, such
as cellular signals or WiFi. Another wireless technology

D. Benham, A. Palacios, P. Lundrigan, J. Mangelson, are at Brigham
Young University.
{laserl4, apal6981, lundrigan, mangelson}@byu.edu.

Fig. 1.
via received signal strength values from four different LoRa beacons on
campus. The signal strength of each beacon is individually modeled by a
GP. Motion is estimated using a magnetometer and a novel wireless signal
strength similarity classifier. These motion estimates are then fused with
observations of LoRa signal strength measurements using a particle filter.

Our experimental low-cost research platform attempts to localize

that is increasing in popularity in the United States and is
well established in Europe is LoRa. For localization, LoRa
provides unique advantages compared to cellular signals or
WiFi due to it being low cost, low power, and long range.
In contrast, cellular networks often face challenges with
insufficient visible cell towers and limited resolution in signal
strength. WiFi on the otherhand, present challenges due to
its limited range and high power consumption.

In this work we localize an agent in an urban environment
solely using the signal strength of LoRa and a magnetometer,
see Fig. 1. We employ Gaussian Process (GP) regression
to model a prior signal strength heat map (III), utilize a
probabilistic motion classifier for motion estimation (IV),
and accomplish localization through sequential Monte-Carlo
sampling (V). Experiments show improvement over existing
methods (VI).

The contributions of this paper include:

e To our knowledge, the first use of commodity off-
the-shelf (COTS) LoRa technology for mobile agent
localization,

« A novel signal strength similarity motion classifier using
Gaussian Mixture Models, and

o A robust localization system utilizing LoRa received
signal strength and a magnetometer.

II. RELATED WORK

As more wireless devices come online, there has been a
renewed focus in using the wireless signals to localize agents



in an environment. Whether indoors, in urban canyons or on
low cost, low power devices, GPS can not always be relied
upon to provide accurate position estimates.

A. Signal Strength Based Localization

The simplest implementation of signal-strength-based lo-
calization is trilateration where signal strength is mapped to
a distance between a transmitter and a receiver. To increase
trilateration accuracy, a weighted least squares approach was
proposed in [1], [2]. By assigning weights to signal strength
measurements based on estimated reliability, the method pro-
posed in [1] reduces the influence of noisy or unreliable data.
Such a technique can be sufficient in open environments, but
can struggle in cluttered urban environments as it does not
attempt to model the aforementioned signal multipath issues.

A common approach to localization in non-linear environ-
ments is fingerprinting, a process in which a unique signature
or “fingerprint” is created for a specific location based on the
characteristics of wireless signals [3]. This is done through
the use of known correspondences to access points. In WiFi
these known correspondences are the MAC addresses of
the router. The most common fingerprint is the received
signal strength indicator (RSSI) which is representative of the
power present in a received radio signal, a measurement built
into most wireless chipsets. To localize via fingerprinting, a
reference database is created by associating measurements
with known locations. By matching real-time signal mea-
surements to the database, the system estimates the user’s
location. A drawback to many fingerprinting techniques is
the necessity of a high fidelity, well covered map.

In an attempt to infer values missing in a fingerprinted
map, [4] uses GP regression. GP based techniques enable
estimating the likelihood of a given measurement because a
GP models both mean and uncertainty of an observed signal.

Early attempts at combining a particle filter with a prior
map was done by [5] where a GP regression estimator was
used in an outdoor environment attempting to localize using
the RSSI values from cellular towers. Following 208 hours of
driving through downtown Seattle and its suburbs to gather
training data, their model was shown to estimate their relative
position within the range of 130 to 230 meters.

Instead of directly observing position, the authors in [6]
attempt to estimate a robot’s motion using differential signal
strength measurements from static WiFi access points in un-
known locations. They estimate the magnitude of translation
of a robot between time steps using a multilayer perceptron.
A magnetometer is then used to determine heading. The
authors employ various similarity score metrics [7], [8] to
extract features from signal strength measurements. At each
time step ¢, similarity scores are computed by comparing
RSSI measurements with the preceding time steps from
t —1 to t — w, where w represents a user-defined window.
With these inputs, their model predicts a magnitude travelled
by the robot with heading estimated by a magnetometer.
Their method achieves position estimates within one to six
meters of error through dead reckoning, outperforming wheel
odometry. Through data exclusion testing, the authors found

that their method still required a connection to a significant
number of access points.

B. LoRa Integration in Robotics

LoRa is a wireless communication technology designed
for low-power, long-range communication in the Internet
of Things (IoT) domain. Developed to address the specific
requirements of IoT devices, LoRa enables devices to com-
municate over significant distances while consuming minimal
power and minimal overhead cost. Most transceiver boards
cost in the range of $10 USD. Unlike many WiFi or Blue-
tooth technologies, LoRa was designed to support battery
powered embedded devices [9]. The technology operates in
the sub-gigahertz frequency bands, providing an advanta-
geous balance between range and energy efficiency. LoRa
employs a unique spread spectrum modulation technique,
allowing for robust communication in challenging environ-
ments with obstacles and interference. The technology has
found applications in various sectors, including smart cities,
agriculture, industrial automation, and environmental moni-
toring, contributing to the expansion and efficiency of IoT
networks. With growing popularity in LoRa enabled devices,
recent work has investigated the efficiency of localization
techniques using LoRa, with a recent survey by [10]. Few
have investigated robotics applications using LoRa.

Many implementations have used LoRa as a communica-
tion technology. Junaedy et al. [11] uses LoRa for inter-agent
communication in a SLAM system and [12] uses it for tele-
operation of mobile robots, sending all data to the operator
in order to run a 2D-SLAM algorithm.

In [13], LoRa is utilized atop a mobile robot to track
targets in an indoor facility, achieving a sub meter median
error across their 100 m? lab space. Their approach however
relies on modified hardware to extract angle of arrival.

A significant amount of work has been done in the
IoT community to localize static, unmodified commercial
hardware devices, such as remote sensors. Work done in [14]
focused on localizing static LoRa devices to a prior map in
a 37,500 square meter area. By modeling the signal strength
of over 10 beacons with a GP, they were able to achieve
accuracy of 20 to 30 meters RMSE. However, because we
are interested in localizing a mobile robot, we additionally
leverage the robot motion to assist in determining its location.

The authors of [15] believe their work to be the first
integration of drones into the LoRa network. With the intent
of aiding in search and rescue techniques by locating an
object with a LoRa beacon, drones with LoRa enabled
devices are deployed to improve upon initial device location
as estimated by the network. The results of their field tests
show that they can decrease location uncertainty from 300
meters to 30 meters.

LoRa based localization has the opportunity to provide a
unique navigation solution as the broadcast range is greatly
increased compared to traditional WiFi routers, while still
maintaining differentiable signal strength in smaller environ-
ments unlike traditional cellular towers. LoRa’s low cost, low
power ability to provide bidirectional communication makes
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Fig. 2. Signal strength heat maps of each beacon across the environment, modeled using Gaussian Process Regression. An RBF kernel is employed with
a non-uniform mean function to accurately represent signal decay in areas lacking data.

it a potentially ideal solution in swarm robotic localization
applications. To the best of our knowledge, we are the first
to develop a system for localization of a mobile robot using
unmodified COTS LoRa hardware.

III. LORA SIGNAL STRENGTH MODELING WITH
GAUSSIAN PROCESSES

The challenge of nonlinear signal multipath propagation
presents a significant obstacle in accurately modeling signal
strength. Traditional methods often struggle to effectively
capture these complexities, whereas GP regression offers
a promising solution by inherently accounting for nonlin-
earities and uncertainties in spatial data modeling. In this
section we explore how GPs can be used to effectively model
the spatial distribution of LoRa signal strength, providing
a robust framework to address for enhancing localization
accuracy.

To generate our model we utilize GP regression [16], [17]
to estimate a separate GP per beacon. The modeled heat
maps can be seen in Fig. 2. A GP quantifies uncertainty by
estimating a distribution over functions, enabling the assess-
ment of uncertainty at each input point via the covariance
structure. As such, GPs capture the relationships between
data points and estimate the model confidence. We can view
our gathered training points as measurements of the function
z; = f(x;) + € where z; is an (z,y) tuple of our sampled
location on campus, z; is the recorded signal strength of the
beacon represented as a negative dBm value, and € is an
additive zero-mean Gaussian noise with known variance o2.
The GP estimates the posterior distribution over functions f
from our training data. The underlying assumption of a GP
is that function values are correlated in space according to a
kernel function k(x1,x2). In practice, the kernel function is
user defined. We test several kernel functions including the
Gaussian Radial Basis Function (RBF), Rational Quadratic
and the Matérn32 kernel [18], our results are discussed in
section VI
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Fig. 3. Relationship between signal strength and the L? distance to beacon
1, revealing a logarithmic decay. To enhance our Gaussian Process’s ability
to infer in regions lacking data, a best-fit line, represented by y = a +
bln(z), is calculated through linear least squares fitting. The data exhibits
significant noise due to the signal multipath and fading issue.

The RBF kernel is defined as
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with the lengthscale ¢ and the variance o serving as the only
parameters. The lengthscale ¢ governs the smoothness of the
function and controls how rapidly the function changes over
distance, while the variance o dictates the average distance
of the function from the mean. These hyper-parameters are
tuned using gradient-based optimization within the frame-
work of variational inference, which iteratively adjusts the
variational parameters to minimize the difference between
the approximated and true posterior distributions. We use the
popular probabilistic programming package Pyro [19] for all
our GP inference.

A. Mean Function Modeling

A mean function is provided to establish a prior, allowing a
GP to make predictions where no training data exists. Typical



GPs often utilize a zero or constant mean function, which
proves inadequate for modeling signal strength. A simplistic
yet powerful way to model signal strength is with a simplified
lognormal channel function such as y = a + bln(x), where
y is the expected signal strength, - is the L? distance from
the transmitter, and both a and b are coefficients that need to
be learned [20]. We use this function as our mean function
because it accounts for the logarithmically decreasing signal
pattern that isotropic antennas exhibit. We use least squares
to solve for the coefficients of our training data using the
following equations:
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where y; and z; form a measurement pair relating signal
strength to distance and n is the number of training points.
By using a realistic mean function, our model best represents
the true state of the data. Fig. 3 shows a line of best fit for
the signal decay of beacon 1. The data is considerably noisy
which is attributed to multipath propagation, signal fading,
and loss of line of sight.
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B. Sparse GPs

A drawback of GPs is their computational complexity,
which scales to O(n?) when evaluating the covariance struc-
ture where n is the number measurements. With over 6000
training points collected from our vehicle, computing the
uncertainty evaluation remains feasible but becomes slow,
rendering it impractical for larger datasets. To account for
this we employ the use of Sparse GPs (SGP) [21]. SGPs em-
ploy inducing points to approximate the complete Gaussian
model, effectively reducing computational complexity. This
reduction brings the complexity down to O(mn?), where m
is the number of inducing points. To sub-sample our data we
chose m = 600 initializing inducing points at the location
of every 10th data point.

IV. PROBABILISTIC SIGNAL SIMILARITY MOTION
CLASSIFIER

The overall aim of this work is to develop a localization
system solely reliant on a magnetometer and a LoRa receiver.
Achieving this requires the ability to infer motion without
GPS or conventional wheel encoders. To address this chal-
lenge, we utilize the received signals from LoRa beacons to
estimate odometry.

Expanding on the concepts introduced in the recent WiFi
Similarity Odometry paper [6], which proposes a regression-
based method for estimating an agent’s motion using sequen-
tial signal strength measurements, we tailor our approach
to suit our LoRa network constraints. While the authors of
[6] demonstrated the functionality of their technique with as
little as 20 access points, we encountered challenges when
applying it to our smaller network of only four beacons.
In our experiments, a perceptron system based on [6] often

resorts to selecting the data mean or exhibited overfitting.
Instead of relying on a regression technique to predict
the agent’s translation, we optimize the feature extraction
methods and develop a probabilistic classifier to determine
whether our agent has moved between time steps. Moreover,
the developed classifier assigns a likelihood to each choice,
which we utilize when sampling motion updates in a particle
filter, detailed in section V.

A. Features

To extract features we compare RSSI values between time
steps to create a similarity score. Since the association of
beacons is known, and because LoRa signals are strong
enough to be received throughout our testing area, we
compare similarity scores for each beacon RSSI individually.
To extract a similarity feature F' for beacon n we use another
form of the Gaussian Radial Basis function.
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In this function, R; and R;_; indicate RSSI measurements
for beacon n at time steps ¢ and ¢t —i. Measuring the variance
of RSSI measurements, we find o = 1.5. By combining these
similarity scores together for each beacon, four features are
extracted when evaluating R; and R;_;, creating a feature
vector of [Fl, F27 F3, F4]t,t—i

To establish a history of these features, we imple-
ment a sliding window w, where each measurement is
evaluated for a similarity score with the w previous
measurements. Feature vectors are concatenated across
a measurement window to create an input signal F,
where F = {[Fl, FQ, Fg, F4}t,t—1a [Fl, FQ, Fg, F4]t,t—27 ceey
[F1, Fa, F5, Fy]t 1—w}- In our experiments, we find a sliding
window of length w = 3 to be sufficient. At a few timesteps
our agent did not receive measurements from all four bea-
cons, to handle these scenarios we add the following checks.
If a signal isn’t received from beacon n during both time
step ¢ and ¢ — 4, we assign a similarity score of F;,, = 0.7,
indicating a moderately similar signal strength. If a signal is
received at time step ¢ but not t — ¢ (or at t — ¢ but not t)
we assign F,, = 0.3, indicative of a weak signal similarity.

To train a classifier capable of distinguishing between
movement and no movement, the robot would periodically
stop for segments between 5 and 20 seconds while collect-
ing data. This enables a collection of movement and non-
movement examples from across the entire test area. The
feature vectors F are then assigned a label. The classes
of “movement” and “no movement” are determined based
on whether the position of the robot between time step ¢
and t — 1 differed by less than 0.15 meters. This threshold
is selected according to the accuracy of our RTK GPS to
establish ground truth. (The RTK has an accuracy of +0.1
meters).

Due to the disproportionate number of instances labeled
as “movement,” we employ sub-sampling to ensure an even
distribution of classes for training and evaluation of our
model. Fig. 4 shows the distribution of feature vectors
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Fig. 4. Distribution of similarity scores for movement and no movement
classes across all four beacons, shown with shaded regions indicating one
standard deviation from the mean. With this amount of data overlap, denoted
in purple, a simple binary classifier is insufficient for classification.

distinguished by label. Because of the significant overlap
among the labels, a basic binary classification approach
would prove inadequate for accurate classification.

B. Gaussian Mixture Model

An understanding of uncertainty is crucial for our model
as mis-classifications can severely hinder performance. In
lieu of employing a multi-layer perceptron or a k-nearest
neighbor classifier, we classify the different movement labels
using Gaussian Mixture models (GMM). Using a GMM
allows a likelihood to be associated with each prediction.
At training time, a separate GMM is fit for each class of
“movement” and “no movement” features. During evalu-
ation, each feature vector F is assessed by both GMMs,
assigning a likelihood for each label. Total probability is
calculated by adding together the likelihoods of each class,
and the posterior is calculated by normalizing each likelihood
by the total probability. Since the distribution of classes are
evenly split, the prior probabilities are assumed to be equal.

When exclusively selecting the label with the higher
posterior probability, our model selects the correct choice
with approximately 87% accuracy. The confusion matrix of
our model can be seen in Fig. 5. By leveraging the posterior
likelihood to ensure that a class has a normalized posterior
probability of at least 0.9, we observed an increase in model
accuracy up to 95%. How we handle these decisions and
leverage the likelihood is further discussed in Section V.

Because the input to our model is a sliding window, some
of the labels of “no movement” include the scenario where
the robot is in motion at time step ¢ — w, but stopped
at time ¢. In such situations there would be a dramatic
change between the similarity scores between recent and
older measurements. To ensure our model was not relying
on these changes to infer decisions, we evaluated the model
accuracy after pruning all feature vectors that contained a
mixture of “movement” and “no movement” between time
steps t and ¢ —w. We concluded that our model was not over
using these changes as the accuracy only dropped to 83%.

Confusion Matrix for GMM Classifier
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Fig. 5. Normalized confusion matrix of signal similarity Gaussian Mixture
Model Classifier with approximately 87% accuracy on evaluation set. Both
the training and test sets are evenly distributed across each class type to
ensure accurate classification

V. LOCALIZATION VIA PARTICLE FILTERING

We employ a Rao Blackwellized particle filter [22] with
uniformly distributed starting particles to localize our vehicle
within our test area. Our filter consists of the three typical
particle filter stages: motion update, particle weight update,
and resampling of particles. We preform these stages sequen-
tially using the heading and RSSI values measured by the
vehicle.

To determine the vehicle’s motion, we utilize our GMM
classifier to inform an estimate of the magnitude of the
distance traveled. If the classifier indicates that the agent has
moved since the last measurement, we set the magnitude
estimate to a constant value, typically the average cruising
speed of the robot in practice. If it predicts no movement,
a magnitude of zero is assigned. To ensure diversity and
mitigate particle disparity, each particle’s motion update is
individually calculated by incorporating zero-mean Gaussian
noise into each measurement. The magnetometer is used
to determine a heading, assuming an error within a fixed
standard deviation. A simple odometry motion model from
[23] is used. For magnitude calculations, we utilize the GMM
likelihood to assign appropriate errors. Our testing revealed
that when the classifier’s selection had a normalized likeli-
hood of at least 0.9, the accuracy increases to 95%. When a
selection has a high likelihood, we assign a lower sigma
error to the magnitude; conversely, for less likely GMM
classifications, a larger error term is applied to maintain
particle diversity and ensure robustness.

After the motion update, new weights are computed for
each particle. The updated weights are determined based on
polled RSSI values from individual beacons. Broadcasting
at regular intervals, each beacon’s RSSI values are recorded
by the vehicle. The measured RSSI values are then com-
pared with the modeled heat maps at the particles’ current
position. To derive the weight values, we employ the inverse
Mabhalanobis distance between the collected RSSI values and
the modeled RSSI values. By using the inverse distance,
proximity between the measured and expected value corre-
sponds to a smaller Mahalanobis distance, leading to higher
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Fig. 6.  Testing segments used for evaluation. Individual segments are
excluded during the training of the GP or motion classifier. Segments 6-8
represent shorter paths where all adjacent prior data was removed to assess
model generalization.

weight values for particles—indicating a stronger likelihood
of accurate representation. At any given timestamp, we
may receive RSSI values from independent beacons. This
independence allows us to compute new overall particle
weight values by multiplying the calculated weight values
for each beacon. Upon updating every particle with its new
weight, a normalization step is performed on the weights.

Finally, after the particles have been moved and new
weights are calculated and normalized, the particles need to
be resampled. Resampling is done with replacement accord-
ing the new weights where particles with higher weights are
more likely to be sampled. The entire particle filter process
is then repeated at the next time step.

With each iteration, particles clustered around more prob-
able regions are sampled with higher frequency, whereas
those situated in less probable areas undergo less frequent
sampling. This leads to the convergence of particles towards
the regions deemed more likely. The belief state for the
filter is determined by computing the weighted average of
all particles, where the weights correspond to the assigned
particle weights prior to resampling.

VI. RESULTS AND DISCUSSION

We placed four LoRa beacons, mounted 2.5 meters above
the ground across a portion of BYU campus with a receiving
LoRa device mounted 1.25 meters atop an autonomous
vehicle. Each beacon and receiver is powered by a Pycom
LoPy4 board, operating in the ISM frequency of 915 MHz.
Our vehicle is a custom low cost differential drive research
platform as shown in Fig 1. To collect data, the vehicle drove
around the test site for three hours, maintaining an average
speed of 0.6 m/s. Ground truth was established using an RTK
GPS, pairing positions with recorded RSSI values from the
beacons, sampled at 1 Hz. Along with the RTK GPS and
LoRa receiver, the vehicle is equipped with a magnetometer,
low cost wheel encoders with four degree precision, and a
non-RTK GPS.

From the collected data, eight test segments are partitioned
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and run to evaluate filter and GMM accuracy. Test locations
can be seen in Fig. 6.

A. Localization Technique Accuracy Evaluation

For each test segment, the testing portion is excluded from
the training data for the GPs and the GMM. The first five
test runs encompass longer routes where a majority of the
path is retracing areas previously recorded. The subsequent
three are shorter, consisting of unrecorded new areas. We
will refer to these testing areas as ‘“Prior Adjacent Data” and
“No Prior Adjacent Data,” respectively.

We assess the efficacy of our GMM signal similarity
classifier model by substituting alternative motion methods
into the particle filter motion update step and comparing the
resulting RMSE. The additional motion models include a
constant velocity model and wheel encoder measurements.
As shown in Table I where each experiment is repeated 50
times and errors are averaged, the motion update with wheel
encoders yields the most accurate localization results with
an RMSE of 2.12 meters. Notably, our model exhibits com-
parable accuracy solely using the LoRa RSSI measurements,
averaging an RMSE of 2.57 meters. Both methods signifi-
cantly outperform the naive approach of using the simplistic
constant velocity model. When comparing our LoRa localiza-
tion system with other conventional localization techniques,
we observe that a standard GPS sensor averaged half a meter
better in accuracy. All approaches significantly outperformed
both dead reckoning wheel odometry and the weighted least
squares method [1].

B. Kernel Evaluation

In contrast to previous works, which often leave the eval-
uation of kernels as an exercise to the reader, we provide the
following experiment. During the training phase of our GP
prior map, we substitute the RBF kernel with other common
isotropic kernels and rerun all particle filter experiments.
The results can be seen in Table II. We observe only a
marginal improvement with the rational quadratic kernel over
the RBF in regions lacking prior adjacent data. However, the
RBF kernel exhibited a significant increase in accuracy in
areas with prior adjacent data. As a result, we affirm that
the RBF kernel adequately meets the requirements for our
implementation.



Conceptually, the only difference between the kernels is
an alpha parameter that can vary the lengthscale in different
areas. This alpha parameter may overfit to noise or minor
fluctuations when prior adjacent data exists, leading to worse
performance compared to simpler kernels. On the other hand,
in regions with sparse or no data, the flexibility of the rational
quadratic kernel allows it to make more accurate predictions
by capturing more complex relationships between input and
output variables.

The flexibility of the Matérn kernel, with its characteristic
peaks and steep drop-offs, can contribute to overfitting, es-
pecially in regions with sparse data. While high smoothness
parameters enable it to capture intricate patterns, they may
also cause excessive fitting of noise and outliers. Evidence
of this is apparent in Fig. 7 where the Matérn kernel tends
to overfit in areas that greatly differ from the mean function.
We include combined kernels in our experiment but find that
they do not substantially improve accuracy.

C. Generalization in Areas with No Prior Adjacent Data

To assess the generalization capabilities of our RSSI heat
maps and particle filter, we evaluate the accuracy on three
segments devoid of prior adjacent data. In these segments,
any training points measured on the same path were removed.
Segment 8, situated along the boundary of the model, lacks
surrounding training data. Consequently, the GP heavily
depends on its mean function for predictions, which hinders
its ability to find the correct solution in this scenario. In
contrast, segments 6 and 7 are situated along paths within the
convex hull of training points, enabling the GP to interpolate
effectively between these reference points with low error.
When the GP can leverage prior surrounding data, the model
finds an accurate solution as can be seen in Table III

D. Localization in GPS Denied Environments

To further investigate the generalization of our model and
its robustness, we conduct an experiment within a partially
obstructed GPS environment, devoid of any prior training
data for the GP. The experiment entails the robot traversing
a lap around a building, encompassing a covered walking
space on both the west and east sides. The building can be
seen in Fig. 8 b) and 8 c), with an approximated trajectory
overlaid on the image.

Due to the unreliability of GPS signals along most of
the trajectory, no ground truth is established, and the path
is approximated. To obtain a rough estimate of error, we
calculate the minimum L2 distance to the path for each
measurement. Running the particle filter experiment 50 times
results in an RMSE error of 4.6 meters, while GPS yields
an average RMSE of 26 meters, excluding the 10% of
dropped measurements. The filter’s estimate drifts to about
10 meters on the east side of the building, likely due to the
lack of training data to model the signal fading next to the
building. By integrating prior data gathered from beneath the
overhang, this error could be significantly reduced. Although
a rough estimate is used to approximate ground truth, this
experiment demonstrates the resilience of our approach in
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Fig. 8. Trajectory plots in a partial GPS denied environment. The particle
filter is evaluated 50 times, with the estimate for each run shown in green.
The blue line shows the average across all the runs while the red line
represents the location tracked by the RTK GPS. The black line in each of
the figures is the approximated path, as ground truth could not be established
for most of the run due to the building overhangs as seen in c¢). Even in
GPS denied environments our LoRa approach can still function. No training
data was collected under the overhangs.

scenarios where conventional methods such as GPS fall
short.
VII. CONCLUSION

This paper presents a method of localization based solely
on RSSI measurements from LoRa modulating beacons and
a magnetometer. The method involves modeling the RSSI
of LoRa using GP regression, estimating motion via a novel
probabilistic signal similarity classifier, and determining ab-
solute localization through particle filtering. As a result, the
proposed method achieves an accuracy of under three meters
RMSE. Additionally, we believe this work marks the first
known application of COTS LoRa technology for mobile
agent localization.

We find that employing an RBF kernel for our GP
yields the most favorable outcomes, demonstrating effective
interpolation in test locations lacking prior adjacent data.
When assessing various motion models for the particle filter,
our motion classifier attains comparable accuracy to wheel
encoders in estimating relative motion, but it can be applied
to non-wheeled systems such as handheld devices or legged
robots. Traditional GPS outperforms our magnetometer-
LoRa localization system with an average accuracy of 0.5
meters RMSE, however in GPS-denied environments our
method accurately estimates the robot location when GPS
fails.

We plan to further investigate our method in GPS denied
environments by substituting LoRa for underwater acoustic
modems to localize marine agents. We are optimistic that our
model can effectively interpret the inherently noisy signals
and low broadcast rate characteristic of acoustic signals in
shallow water.
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