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Abstract— This paper presents a low-cost and scalable local-
ization framework for autonomous underwater vehicles using
one-way acoustic communication in shallow water environ-
ments. The system relies solely on received signal strength (RSS)
from four fixed acoustic beacons and a heading measurement to
estimate the vehicle’s position. The signal field of each beacon
is modeled independently using Gaussian Process regression,
enabling a spatially-smooth data-driven representation of the
signal landscape, even in environments prone to severe multi-
path effects. Motion is sampled probabilistically based on com-
manded velocity and heading measurements, then fused with
RSS observations using a particle filter. Unlike conventional
acoustic positioning systems that require synchronized two-way
communication, our approach leverages one-way broadcasts
and passive localization of the agent, reducing system com-
plexity and enabling scalable multi-agent deployments without
added infrastructure cost. Experimental results demonstrate
sub-20 meter localization accuracy, outperforming a bearing
only localization approach and highlighting the viability of RSS-
based acoustic localization in shallow, cluttered, GPS-denied
marine environments.

I. INTRODUCTION

Underwater localization remains a critical challenge, with
significant implications for applications such as inspection,
reconnaissance, and maritime security. Signal attenuation in
water prevents submersible vehicles from utilizing common
electromagnetic sensors like GPS, LiDAR, and WiFi, making
robust underwater navigation an inherently complex problem.
External positioning systems are a popular choice that rely
on environmental hardware to aid in agent localization.
Three of the most common flavors of acoustic positioning
systems include short (SBL), long (LBL), and ultrashort
(USBL) baseline approaches [1]. These techniques, how-
ever, rely on either two-way communication or synchronized
clocks for accurate robot localization [2]. The need for two-
way communication, coupled with the half-duplex nature
of underwater acoustic transmissions, imposes significant
overhead that severely constrains the scalability of multi-
agent operations. [3].

In this paper, we report on our efforts to apply a WiFi
localization technique that relies on the received signal
strength (RSS) to underwater acoustic positioning systems
[4]. Our approach does not require two-way communication
or synchronized clocks, as is typical in common acoustic
positioning systems, nor does it rely on angle of arrival
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Fig. 1.
signal strength values from four acoustic modems in a marina. The signal
strength of each beacon is modeled individually using a Gaussian Process
(GP). Motion is sampled based on the commanded velocity and a heading
measurement, then fused with the received signal strength measurements
through a particle filter to estimate the vehicle position.

Our research platform, the WAM-V 8, localizes using received

measurements. This enables its application to any node with
an acoustic hydrophone, lowering the overall cost of the
system. Moreover, the system is fully passive on the agent-
end, thus enabling localization of large-scale fleets. Our
approach creates a prior signal strength heat map modeled
with Gaussian Process (GP) regression. We then employ
sequential Monte Carlo sampling to localize the agent to
these heat maps. Experiments are conducted on a surface
vessel equipped with a submersible sensor platform to es-
tablish GPS ground truth, with initial results demonstrating a
localization accuracy of less than 20 meters, outperforming
angle of arrival only methods in an environment prone to
multipath propagation.

To the best of our knowledge, this is the first study to
explore localization relying solely on RSS measurements
from an acoustic positioning system.

The contributions of this paper include:

o Development of an RSS-based localization technique
for underwater acoustic positioning systems, eliminating
the need for two-way communication or synchronized
clocks.

o Experimental validation of the proposed technique in
a shallow-water environment, demonstrating sub-20-
meter localization accuracy.

« Introduction of a cost-effective, single-node solution for
underwater localization, suitable for low-cost systems
and scalable to multi-agent deployments.



II. RELATED WORK

Accurate localization is fundamental for autonomous
agents, particularly in environments where traditional nav-
igation signals are unavailable or unreliable. For underwater
marine vehicles, the absence of a pervasive global positioning
system necessitates alternative methods to estimate their
global position.

1) Acoustic Position Systems: Acoustic positioning sys-
tems (APS) provide underwater navigation capabilities anal-
ogous to GPS for terrestrial environments. Unlike GPS,
which relies on a constellation of satellites freely accessible
to any receiver with line-of-sight to the sky, APS require
pre-deployed infrastructure within the operational area. This
infrastructure typically consists of acoustic transducers or
modems fixed at known locations in the environment, form-
ing a local reference frame for underwater localization [5].

There are three common classes of APS: Long Baseline
(LBL) [6], Short Baseline (SBL) [7], and Ultra-Short Base-
line (USBL) [8] systems. These system employ combine
time-of-flight observations with time difference of arrival or
phase shifts to derive the range and bearing to an acoustic
source. Their primary distinctions lie in deployment scale
and infrastructure complexity. Range estimation in these
systems is typically performed using two-way travel time,
where a signal is sent and an acknowledgment is received,
allowing the system to calculate distance based on round-
trip time. Alternatively, one-way travel time may be used
if highly synchronized clocks are available on both ends,
though this is more challenging to implement and maintain
for large fleets. Additionally, each of these methods typically
require the agent being tracked to actively transmit limiting
scalability and secrecy.

In a typical LBL system, several transponders are anchored
to the seafloor or fixed in known positions around the perime-
ter of the operating area. In turn the mobile agent emits
an acoustic ping to each of the surrounding transponders
which then reply. The mobile agent measures the round-trip
time of flight to each transponder, and through trilateration
computes its own position. While LBL systems provide high
positional accuracy over large areas, they require significant
infrastructure and precise calibration.

SBL systems follow a similar principle but with all trans-
ducers co-located on a short array, often mounted on the hull
of a support vessel or a pier. The mobile agent emits a ping,
and the system computes its position using time difference
of arrival and bearing information derived from the array.
Because position estimation is performed externally, a return
message is needed to communicate the computed location
back to the mobile agent. Due to the short baseline (on
the order of a few meters), the accuracy and resolution are
limited compared to LBL. However, SBL systems are easier
to deploy, making them suitable for short-term operations or
environments where anchoring transponders is impractical.

USBL systems integrate multiple receivers into a single
compact transducer head (see Fig. 2. The core innovation lies
in its ability to simultaneously determine both the angle of

Fig. 2. Custom-built PVC frame used to mount static beacons in the test
environment. The modular and lightweight design allows for rapid deploy-
ment and recovery of SeaTrac X150 USBL acoustic modems. Although
USBL devices were used for signal collection, our RSS-based localization
method does not rely on their full positioning capabilities.

arrival and the range of an acoustic signal. The tightly clus-
tered array of receivers within the USBL transceiver exploits
the subtle phase shift of the incoming sound wave across its
individual elements to precisely estimate the angle of arrival
(both azimuth and elevation). For distance calculation, USBL
utilizes the two-way travel time of the acoustic ping, similar
to the time of flight principles employed in LBL and SBL
systems. This combined measurement allows for the precise,
real-time localization of an underwater target; its compact
size and ease of deployment make it a highly versatile and
widely adopted solution for various underwater operations.
When ranging information cannot be provided, a USBL can
still be used to estimate its position using a bearing-only
localization method [9].

While all three systems are widely used and can offer
sub-meter to meter-level accuracy in ideal conditions, they
share common drawbacks including (1) the need to deploy
dedicated infrastructure; (2) sensitivity to environmental fac-
tors such as cluttered environments, multipath, temperature
gradients, and salinity; and (3) reliance on two-way acoustic
communication or tightly synchronized clocks. These con-
straints pose a significant challenge to scaling such systems
for multi-agent deployments. In particular, if each agent
were required to participate in two-way exchanges to receive
its position estimate, the communication bandwidth would
quickly become saturated. Moreover, achieving and main-
taining precise clock synchronization across multiple mobile
agents is both technically difficult and cost-prohibitive in
many field environments.

2) Signal Strength Based Localization: There is growing
interest in wireless signal-based localization [10]-[15], where



a mobile agent estimates its position using only RSS mea-
surements. RSS measurements represent the power contained
in a received radio or acoustic signal and are typically
expressed in decibels relative to a reference power level.
These values are readily available from most commercial
wireless chipsets and sensors, making RSS an attractive
modality for low-cost localization.

In air, the strength of electromagnetic (EM) signals decays
logarithmically with distance and is relatively stable under
ideal conditions [16]. However, in real-world environments,
obstructions and multipath interference often degrade the
reliability of RSS-based distance estimation [17]. Multi-
path interference occurs when the transmitted signal reflects
off surfaces such as buildings or terrain, causing delayed
copies of the signal to arrive at the receiver. The presence
of overlapping or delayed signals can lead to significant
fluctuations in the measured signal strength that do not
correlate directly with distance, an effect that undermines
the assumptions of standard path loss models. Multipath is
inherently present in shallow marine environments where
acoustic signals reflect not only off man-made structures
such as docks and passing vessels, but also off the water
surface and seafloor. Even in the absence of multipath effects,
the challenge of correlating signal strength to distance in
the marine domain is amplified. The strength of acoustic
signals is highly sensitive to environmental factors such as
water temperature, salinity, and depth, all of which can vary
spatially and temporally [18], [19]. These variations make
it difficult to establish a consistent mapping between signal
strength and distance, complicating localization efforts in
underwater and near-surface environments.

To address the multipath problem, a common technique
called fingerprinting is used. Fingerprinting associates mea-
sured signals such as RSS with specific physical loca-
tions [15]. The downside to this approach is the requirement
for a dense map. To overcome this, GP regression can be
utilized to infer missing values [12]. Building upon these GP
signal strength heat maps, [11] and [4] incorporate iterative
Monte-Carlo sampling to estimate the location of a mobile
agent.In this paper, we adapt these techniques to enable
localization of underwater acoustic systems.

III. GAUSSIAN PROCESS BASED SIGNAL STRENGTH
MAPPING

To create a prior RSS-based heatmap for localization, we
employ GP regression, a non-parametric Bayesian approach
well-suited for modeling spatially correlated data. GPs offer
a principled way to capture both the mean and uncertainty of
a continuous function given sparse and noisy measurements.
These capabilities make GPs particularly effective for inter-
polating RSS values across an environment where physical
factors may induce irregularities.

The key idea behind GP regression is that measurements
taken at nearby locations are likely to be similar. This spatial
correlation can be encoded using a kernel function k(x1,xz2),
which defines the covariance between RSS values at two
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Fig. 3.  Acoustic signal strength from beacon 3 is plotted against its

corresponding Euclidean distance, illustrating the logarithmic decay ob-
served in the underwater environment. This empirically derived relationship,
represented by the log-normal channel model y = a + bln(z), serves as
the mean function for the Gaussian Process, providing a prior expectation
of the signal field. Coefficients a and b are determined through linear least
squares fitting. The data exhibits significant variability and noise, primarily
due to the prevalent multipath propagation within the shallow marina test
environment.

positions x; and xs. The choice of kernel determines the
smoothness and generalization behavior of the model.

Following the approach established in our prior work [4],
we adopt the Gaussian Radial Basis Function (RBF) kernel,
defined as

N2
krpr(z,2") = 0% exp (—(962;)) (1)

where ¢ is the lengthscale and o is the variance. The
lengthscale ¢ determines the smoothness of the resulting
function by controlling how quickly it varies with input dis-
tance, while the variance o scales the overall deviation from
the mean. These kernel hyperparameters are optimized via
gradient-based methods using variational inference, which
updates the variational distribution to approximate the true
posterior. All Gaussian Process inference is implemented
using the Pyro probabilistic programming library [20].

To define the prior expectation of the signal field, Gaussian
Process regression requires a mean function. While a zero-
mean prior is commonly assumed in practice, we instead
adopt a simplified log-normal channel model of the form
y = a + bln(x), where y represents the predicted signal
strength, x is the distance to the transmitter, and a and b are
coefficients learned from data in our specific test environ-
ment [21]. Although this model is relatively simple compared
to those presented in [18] and [19], we find it performs
sufficiently well in noisy environments (see Fig. 3) without
requiring estimates of depth, salinity, or water temperature.

IV. LOCALIZATION VIA SEQUENTIAL MONTE CARLO
SAMPLING

To estimate the position of the vehicle from RSS mea-
surements, we employ a Sequential Monte Carlo Particle



Filter [22]. This filtering technique is well-suited for non-
linear, non-Gaussian systems. The use of a particle filter
enables robust handling of unknown initialization and allows
us to simultaneously represent and track multiple hypotheses
(multi-modal estimates) for the position of the vehicle. In
our application, particles are used to represent the posterior
distribution over 2D vehicle positions and heading. Individ-
ual GPs are trained for each acoustic beacon to model the
measurement likelihoods for obtaining a specific RSS value
at each location in the map.

The filter operates at 0.33 Hz, corresponding to the rate at
which acoustic RSS measurements are sequentially received
from individual base stations. At each time step, the particle
filter performs three core operations including (1) motion
propagation, (2) weight update based on the latest RSS
observation, and (3) particle resampling to refine the belief
over the vehicle’s position.

A. Motion Propagation

To model vehicle motion, we simulate a probabilistic
transition from the previous state using onboard sensor
inputs. Specifically, we use the recorded heading from a
dual antenna GPS and the commanded forward velocity to
predict the positional change of the vehicle over a fixed
time interval of one second. For each particle, a new head-
ing is sampled from a Gaussian distribution centered at
the measured heading, with added noise to reflect sensor
uncertainty. The forward displacement is similarly sampled
based on the commanded velocity, assuming constant speed
during the interval. The resulting motion samples capture
the uncertainty in vehicle motion, allowing the particle set
to represent a diverse set of plausible future states.

B. Weight Update Using GP-Based Measurement Likelihood

Following the update of each particle’s position, a new
importance weight is assigned based on the agreement be-
tween the predicted and measured RSS from the acoustic
modem. A GP trained on prior signal strength data is used
to generate a predicted distribution of RSS values for each
particle’s location. A weighting score for each particle is then
calculated by taking the inverse of the Mahalanobis distance
between the observed RSS and the GP-predicted mean, with
the GP-predicted variance used to normalize the residual
for each measurement. This approach effectively rewards
particles that lie in regions of the environment where the
observed measurement is statistically probable and penalizes
those where it is unlikely. Because only one base station
beacon can broadcast at a time in our acoustic setup, only a
single GP model (or heatmap) corresponding to that beacon
is used during each measurement update.

C. Resampling

Resampling is performed with replacement, proportional
to particle weights, to mitigate sample impoverishment and
maintain diversity within the particle set. The resulting set of
particles provides an updated belief over the vehicle position,
conditioned on both the motion model and the most recent
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Fig. 4. Testing path (shown in black) used for evaluation. The blue
antennas denote the acoustic modem locations deployed from the docks.
No evaluation data was used in GP training.

RSS measurement. This process is repeated at each time step
to track the vehicle as it moves through the environment.

V. RESULTS

Data for our experiments was collected at a local ma-
rina characterized by shallow waters and high levels of
acoustic clutter due to surrounding docks, pilings, and other
infrastructure as seen in Fig. 4. Four SeaTrac X150 USBL
acoustic modems were deployed as static beacons, mounted
to custom-built PVC frames and suspended approximately
one meter above the seabed (see Fig. 2). The marina depth
ranged between 2 and 2.5 meters resulting in a highly
multipath-prone environment.

A fifth modem was mounted to the underside of our
autonomous surface vehicle, the WAM-V 8§, at a depth of
roughly 30 centimeters below the water surface. Data was
gathered using the surface vessel for convenience and to
establish ground truth via GPS.

Because the static beacons were not networked together,
we implemented a simple polling scheme in which the USV
mounted mobile modem sequentially communicated with
each of the four base stations, receiving one measurement
approximately every three seconds. This asynchronous com-
munication strategy was necessary to avoid acoustic interfer-
ence. If multiple beacons transmitted simultaneously, signal
collisions and packet corruption could occur. Unlike terres-
trial WiFi localization, where a receiver can often observe
multiple access points broadcasting on separate channels,
underwater acoustic systems are bandwidth-limited. Coordi-
nated, one-at-a-time transmissions are therefore essential for
reliable operation.

Two field missions were conducted to support model
training and evaluate localization performance.

To support training of the RSS GPs for each modem, the
vehicle was commanded to drive in a grid pattern with 10-
meter line spacing, covering the test area both vertically and



TABLE I
COMPARISON OF LOCALIZATION ACCURACY: BEARING VS. RSS-BASED
MEASUREMENT MODELS IN PARTICLE FILTER

Measurement Update ‘ Mean (meters)  Std Dev (meters)
Bearing 21.3 2.3
RSS w/ GP 17.4 2.1

horizontally. This pattern ensured dense spatial sampling of
RSS values across the marina and was used to train the GP
mean function and prior map for each static beacon.

To support evaluation of the proposed localization solu-
tion, the vehicle was commanded to follow a randomized
sequence of waypoints within the same area to simulate a
non-structured operating pattern (see Figure 4).

A. Comparison Against a Bearing-Only Approach

To assess the performance of our RSS-based localiza-
tion method, we conducted a comparative analysis using a
bearing-only sensor measurement provided by the phased
array of the USBL. We chose this comparison because both
the RSS-based and bearing-only approaches are compatible
with one-way communication and do not require synchro-
nized clocks, making them suitable candidates for scalable,
low-bandwidth systems.

The bearing-only measurement directly replaced the RSS-
based sensor update step within the particle filter framework.
This expected bearing measurement is computed using the
known positions of the static beacons and the current heading
of the vehicle, as measured onboard. All other components
of the particle filter—including motion propagation, weight
normalization, and resampling—were held constant to isolate
the effect of the measurement modality on overall localiza-
tion performance.

As presented in Table I, the RSS-based approach achieved
a mean localization error of 17 meters over the full evalua-
tion trajectory, compared to 21 meters for the bearing-only
method. While both approaches are compatible with one-way
communication and do not require synchronized clocks, the
RSS-based update showed consistently lower error, reinforc-
ing its utility as a practical measurement model for low-
bandwidth, infrastructure-limited underwater localization.

B. Analysis of Bearing Measurement Characteristics

To characterize the impact of the shallow marina envi-
ronment, particularly the prevalence of acoustic multipath
propagation, we analyzed the noise associated with the bear-
ing measurements. Fig. 5 presents two characteristics of the
bearing error. Fig 5(a) displays a histogram illustrating the
distribution of errors in bearing measurements to the static
beacons. The error is defined as the difference between the
expected azimuth to a static beacon and the actual measured
azimuth. The expected azimuth measurement was calculated
using the known vehicle position and heading (measured via
a dual antenna GPS) and static beacon locations (measured
using RTK GPS). The histogram reveals a consistent error
distribution primarily within +8°, with an average absolute
error of 9°and a standard deviation of 16°.

a) Histogram of Azimuth Prediction Error
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Fig. 5. Analysis of bearing measurement error. (a) Histogram illustrating

the distribution of errors in bearing measurements. Error is defined as the
difference between the expected beacon azimuth (derived from the measured
vehicle heading and known locations of the vehicle and beacon) and the
actual measured beacon azimuth. (b) Scatter plot comparing predicted
beacon azimuth (x-axis) against measured beacon azimuth (y-axis), with
each data point color-coded by the vehicle heading. The dashed red line
represents perfect prediction (y = x), highlighting random measurement
noise and a systematic bias that varies with azimuth, notably showing greater
constant deviations near +120°and minimal bias between +90°. Significant
outliers likely due to multipath can also be seen.

When further evaluating a comparison of predicted versus
measured beacon azimuths, as shown in Fig. 5(b), we see a
systematic bias alongside significant measurement outliers.
While random measurement noise contributes to the general
scatter around the ideal y = z line, the presence of sporadic,
large outliers is also observed, which is consistent with
multipath reflections in cluttered environments. Beyond this
general noise, a clear systematic bias is evident, varying with
the beacon’s relative azimuth. The most pronounced bias oc-
curs at approximately +150°relative to the vehicle’s forward
direction. This specific bias coincides with the location of the
vehicle’s motors, which are attached to the rear of each pon-
toon. Although the retractable sensor plate lowers the modem
beneath the pontoons, the motors and spinning propellers
are still lower in the water and may introduce localized
acoustic interference or flow disturbances that affect bearing
measurements at these angles. It is important to note that this



motor-induced bias at +150°does not fully account for any
broader, uncharacterized systematic trends in the error, which
may stem from other unknown environmental or sensor-
related factors. This observation underscores a key advantage
of our non-parametric GP approach: its flexibility allows it to
implicitly learn and compensate for such complex, systematic
biases and irregular noise patterns inherent in the acoustic
environment.

VI. CONCLUSION

This work introduces what we believe to be the first
method for localizing an agent using only RSS measurements
from acoustic modems. The approach models the RSS of
each modem using GP regression and determines absolute
localization through particle filtering. In a shallow marina
environment (susceptible to multipath signal propagation),
the proposed method outperforms a USBL bearing-only ap-
proach, achieving an average accuracy of 17 meters RMSE.

These results support continued exploration of RSS-based
acoustic localization as a scalable and low-cost alternative
to traditional baseline systems, particularly in settings where
two-way communication and synchronization of underwater
agents is infeasible. Future work may include extending the
framework to support full 3D localization by incorporating
agent depth, as well as evaluating system performance in
larger or more dynamic environments with multiple mobile
agents.
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