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Abstract— For this semester project we take the first steps
in fleshing out our innovative idea: reconstructing infant
keepsakes using advanced neural reconstruction techniques.
Leveraging insights from Structure-from-Motion (SfM) and
Neural Radiance Fields (NeRFs), the project aims to create high
resolution models of an infant hand or foot. The exploration
encompasses related works, data collection methodologies, and
approaches for generating accurate hand models. With an
eye on potential applications, including the possibility of a
startup, the project taps into the current momentum in neural
reconstructions. The subsequent sections detail the exploration
process, methodologies, and our successful initial results that
are leading us to explore the space further.

I. INTRODUCTION

As this semester project required we not double dip on
research, we figured it was the perfect time to finally put
some time towards the idea we’ve had for a couple of
semesters—reconstructing baby hands. The idea began last
Christmas when Derek was making a hand-print ornament
of his daughter that he realized there must be a better way.
We’ve had been exposed to Structure-from-Motion (SfM)
through our research, however we knew that SfM would
fail to create a high enough resolution model. Through
the research and presentations of our colleagues, we were
exposed to Neural Radiance Fields (NeRFs) but still didn’t
know enough about them because they are still (relatively)
new. Through research and development on this semester
project we realized that with the recent developments in the
field of neural reconstructions, now is a unique time in which
we can leverage some of the existing literature to potentially
create a startup, or at least warrant further investigation.

Our semester project focuses around creating a full
pipeline starting at taking a short, simple video on a smart
phone to the finished 3D printed product. There are many
stages that depend upon each other meaning any introduced
errors will be magnified through the entire pipeline. Most
of our project was spent trying out different approaches
and refining certain processes to get good results. We begin
with a related works section on some of the ideas we
looked into and ultimately tried implementing. Next, we
cover our approach to collecting data, solving camera poses,
and prepping data to be used in surface reconstructions. And
then we cover the different approaches we implemented to
create hand models from our different data sets. Finally, we
cover our results followed by a conclusion with future work.

II. RELATED WORKS

Before diving into the related technical work, we want to
first address some of the related methods that still deliver an
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Fig. 1: Printed hand model using Neuralangelo.

infant keepsake for parents and grandparents.

A. Manual Model Creation

The product that inspired this idea is a simple clay kit with
a ribbon. A parent rolls out the clay and then presses their
child’s hand or foot in the center to leave an impression. It
makes a great Christmas ornament or a decoration to hang on
the wall in the nursery. Some of the problems that arise with
this method is parents have to press hard on the child’s hand
to get an impression. This could lead to potentially harming
the child. Despite the insistent pressing, the impression was
still shallow and required painting to really pop. Lots of
detail is lost in the impression as the main takeaway is the
size of the child’s hand. Regardless, it still makes a great gift
for $20.

Another common approach is the physical cast. These can
be purchased as a home kit, but hospitals and doctor’s offices
may also have the materials on hand to make a replica. For
an at home kit, the product can be a bit messy and tedious,
however from our analysis this product can give the best
results. Like the clay impression, both kits are premeditated
products that require more work from the parents. The act
of purchasing a kit and casting are two separate occurrences,
with the latter being rather time consuming. With a digital
model, and if we can get faster results in the future, parents
could get a digital turnaround time of half an hour with a
physical cast mailed shortly after. Casting kits also sit in



the price range of $20 to $30 dollars. In contrast to the at
home kit, casts in doctors offices or hospitals may be done
to preserve the memory of a child who passed away too
soon. It can be scary to trust our algorithm or the quality
of a video from a nurse to create such a priceless keepsake,
but in places where manual casting is not possible, a digital
recreation could be the second best option.

One last interesting product we found is an embossed print
of a baby’s foot generated from the ink-print done by the
hospital. There is no shortage of Etsy shops selling some
variant of this including below average 3D prints, but there
are many shops who sell a very well built frame and display
case. Judging by the quantity of sellers and the amount of
hits some of these shops get, we believe there is a realistic
market for such a product, and no shortage of newborn babies
or excited grandparents.

B. Structure from Motion

Recreating an object from camera imagery is no new idea.
SfM [1] is a common technique that aims to reconstruct the
three-dimensional structure of a scene from a sequence of
two-dimensional images or video frames. The fundamental
idea behind SfM is to estimate the camera poses and the
3D positions of feature points observed in multiple images,
thereby recovering the spatial relationships between objects
in the scene. The process involves tracking distinctive fea-
tures across frames, establishing correspondences between
them, and utilizing these correspondences to compute the
camera poses and reconstruct the 3D geometry. SfM has
found widespread application in various fields, including
robotics, augmented reality, and geographic information sys-
tems. Its ability to generate 3D reconstructions from ordinary
image sequences makes it a valuable tool for tasks such as
scene modeling, object recognition, and camera calibration,
contributing significantly to the development of realistic and
immersive visual environments.

Despite its versatility, SfM faces several challenges. One
notable limitation is its sensitivity to factors such as lighting
variations, occlusions, and repetitive patterns in the scene,
which can lead to errors in feature matching and, con-
sequently, inaccurate 3D reconstructions. Additionally, the
resolution of generated models can be a concern. SfM typ-
ically uses triangulation between points to create a polygon
mesh, which means it may struggle when recreating objects
with low feature points at a high resolution. Forcing the
algorithm to find more feature points will increase computa-
tional demands as well as induce more outliers. Robustness
to outliers and the need for sufficient image overlap for
reliable reconstruction are other challenges associated with
SfM. Addressing these shortcomings often requires advanced
techniques, such as incorporating additional sensor data,
utilizing more sophisticated feature matching algorithms,
or integrating SfM with other computer vision methods to
enhance accuracy and robustness in challenging scenarios.

C. Volume Rendering

To overcome some of the shortcomings of SfM, a new,
groundbreaking field, has recently emerged in computer vi-
sion for synthesizing highly detailed and realistic 3D scenes.
Introduced in a seminal paper, NeRF [2] utilizes neural
networks to model voxels, assigning each voxel an opacity,
density and color value. This neural representation allows
for the generation of high-fidelity images by ray tracing,
where rays are cast from a virtual camera through pixels,
and the neural network is employed to predict radiance along
these rays. NeRF excels in capturing intricate geometry, fine
details, and realistic lighting. The versatility of NeRF extends
to enabling novel views of scenes not present in the training
data, making it a powerful tool for synthesizing visually
compelling and immersive 3D environments.

Gaussian Splatting [3] is a newer technique that builds
upon some of the ideas of NeRFs but instead represents the
scene with 3D Gaussians that preserve the desirable prop-
erties of continues volumetric radiance fields. Additionally,
it is optimized to avoid unnecessary computation in empty
spaces. Gaussian Splatting has taken the field by storm as
it can render high fidelity scenes better than NeRFs in a
fraction of the time.

Like NeRFs, Gaussian Splatting is also a form of volumet-
ric rendering. These methods can generate realistic images
of complex scenes by simulating the interaction of light with
a 3D volume of data, but struggle to recreate physical 3D
meshes. Generating a mesh can be computationally intensive
as it involves calculating the radiance at numerous points
within the volume. Additionally, the resulting volumetric
representations may lack the geometric precision and ef-
ficiency required for certain applications, such as virtual
environments or model recreation. The conversion from
volumetric data to a physical 3D mesh may also introduce
artifacts, impacting the fidelity of the reconstructed geometry.

Surface Rendering Generating novel views with volume
rendering doesn’t inherently mean it has an understanding
of the objects underlying structure. Ultimately, a different
method than radiance fields is needed to create high fidelity
3D models, specifically a neural network needs to be op-
timized to produce a mesh rather than a novel view. This
is where the idea of surface rendering has begun to fill the
space. Instead of using a neural network to output opacity,
density, and color values for each voxel, surface rendering
models output a surface directly, typically done using the
signed distance function (SDF).

One of the first papers to achieve high resolution surface
modeling was NeuS [4]: Learning Neural Implicit Surfaces
by Volume Rendering for Multi-view Reconstruction. NeuS
addresses challenges in neural volume renderings by over-
coming local minima and constraints related to varying
depth changes and occlusions. It leverages both volume-
based rendering, like NeRFs, and surface representations,
using a signed distance function (SDF) to ensure robust
constraints on level sets. The zero-level set of NeuS’s neural
implicit SDF represents the object’s surface, where the func-



Fig. 2: Data set collection progression. A) is the original video collected. B) is segmenting out the background. C) is a
hand laid flat on a plane. D) is laid flat but on a unique background. E) is a combination of what we learned on a custom
background. F) is of a toddlers foot and G) is of a newborns hand while he was sleeping.

tion equals 0. To learn neural network weights, the authors
introduce a novel volume rendering method, minimizing the
difference between rendered and input images. The scene is
represented by functions mapping 3D points to their SDF
and encoding color based on spatial points and viewing
direction. The authors introduce the S-density, combining
SDF and a logistic density distribution, guiding the training
of the SDF network through volume rendering with 2D
input image supervision. Ultimately, NeuS aims to accurately
reconstruct surfaces through this innovative integration of
volume rendering and SDF-based neural representations.

One of the downsides of NeuS, and the field in general,
is prolonged training times. NeuS can take upwards of 8
hours to train on a single GPU. NeuS2 [5] introduces op-
timizations for significant speedups, achieving a remarkable
100x speedup. The implementation utilizes hash encodings
and multi-resolution hash tables of learnable feature vectors
to parallelize the neural network encoded Signed Distance
Function (SDF). The authors utilize CUDA and derive
second-order derivatives tailored to ReLU-based MLPs to
enhance training efficiency. A progressive training strategy
updates the hash table from coarse to fine grade features,
and an incremental learning method extends the approach
to dynamic scenes. NeuS2 provides a notable solution by
incorporating ray marching acceleration strategies and min-
imizing color differences for efficient volume rendering of
hash-encoded SDF. The CUDA implementation significantly
accelerates convergence, emphasizing simplicity in the learn-
ing algorithm to avoid local minima. Although we were
unable to test NeuS and NeuS2 in this work, we plan to
further explore them in the near future.

Like Neus2, the most recent and accurate models have
been built around an encoding scheme called multi-resolution
hash encoding and numerical gradients. This encoding di-
rects the underlying optimization on the level of surface
detail to model. These models optimize starting with coarse
grain details and slowly move towards the finer details.
Higher order gradients are used to be able to capture
and model these finer details. Two examples of using this
encoding scheme is InstantNGP [6] and Neuralango [7].
InstantNGP is more like the traditional NeRF and solely
focuses on rendering visuals while Neuralango focuses on

creating surface meshes. InstantNGP does not suffer from
prolonged training times, but Neuralango does. What both
struggle with is the amount of VRAM on the GPU it
takes to store the multi-resolution hash encoding. Although
Neuralango struggles with training time and the amount of
training memory, Neuralango is the backbone of our project.
It provides accurate models that can easily be post processed
and printed.

III. INPUT PROCESSING

Many iterations were spent as we refined how we prepared
data to be trained by a model. We originally planned to have
a newborn hand modeled by the end of the project but much
of our time was spent iterating between data collection of
adult hands and model generation as we worked to refine
the pipeline.

A. Solving Camera Poses

Since part of the input to these neural methods are camera
poses, they must be provided known poses. They don’t
simultaneously solve for the pose and the shapes structure
like SfM. Our first approach to solving camera poses was to
use the LiDAR in newer iPhone pro models. Using methods
like the iterative closest point (ICP) algorithm, an optimizer
can solve for the poses of the camera. Documentation exists
for using the iPhone app Record3D to export a list of camera
poses solved with the LiDAR. Unfortunately nobody on our
team owns an iPhone with a LiDAR, but we were able to
borrow one. Even so, the Record3D app only allowed a
handful of free scans before requiring a subscription. We
were able to record two different views of an adult hand,
but due to the limited access we weren’t able to fully flesh
out this method as a feasible solution. Perhaps in the future
when LiDARs in phones become commonplace, this solution
would be more practical.

Nevertheless, traditional methods like SfM can still be
used to solve for the initial camera poses and a point
cloud that are fed into neural methods that can be used to
generate novel views or a surface mesh. We tested out two
different SfM software packages, Metashape by Agisoft, and
COLMAP [1]. We ultimately went with COLMAP due to
existing pipelines and that it is open source.



B. Data Set Collection

For most of our data sets we collected 15 to 30 second
videos of an adult hand. It was easier to acquire repeat videos
of an adult’s hand because the adult wouldn’t inadvertently
move their hand during data collection. We found that a
longer video was unnecessary and that too short of a video
wouldn’t have enough coverage or motion blur. Collecting
data was an iterative process as we believed that our neural
reconstructions were failing due to various parameter or
training reasons. Eventually, we realized it wasn’t the neural
reconstruction process failing, rather the old ML euphemism
of ”garbage in equals garbage out”. We weren’t providing
our neural methods good starting data to begin with.

To explain how we came to the conclusion that our camera
poses were rather poor, we’d like to share the process we
went through to get there. An overview can be seen in
Figure 2. We began by recording a raised fist in the air to
easily segment out any background (Fig. 2a), but we learned
that it was hard to solve for the camera poses when there
was a large disparity between background and foreground.
Continuing along the idea of trying to easily segment out the
background we deployed a neural network to automatically
remove the background from images (Fig. 2b). We tried to
force the SfM to only find matching correspondences on
the hand with the thought that we could potentially keep
the camera in a still place and move instead twist the hand.
This approach quickly failed, and we learned that the image
background is necessary to aid in solving camera poses. To
simplify the shape that had to be reconstructed, we then
collected videos of a hand laid flat on a plane (Fig. 2c).
This approach made the disparity between background and
foreground much closer, but still was unsuccessful. We real-
ized that the backgrounds were not unique enough and that
hands alone don’t provide enough unique feature descriptors
either.

Building upon these ideas we found our first relative
success when we laid a hand flat against a checkered pattern
(Fig. 2d). We finally generated a hand model, albeit with
some noise. This is when we finally realized our camera
poses weren’t well defined. Realizing we need some sort
of unique background we made our own by printing out the
results of ”abstract art” from a google images search. We cut
a hole in the middle and stuck a fist through before recording
a video (Fig. 2e). This method worked the best and resulted
in the final product as shown in Figure 1.

By providing the best input data possible we were able
to find optimal parameters for the neural approach in order
to create a 3D model. With that solved we were finally able
to branch out and collect data more reminiscent of what our
final consumer product could be. We collected a 10 second
video of a very wiggly toddler’s foot. She wasn’t an ideal
test subject but it’s what we had to work with. Her mother
wore a patterned shirt and we wrapped a blanket around her
ankle to easily segment out the object of interest (2f). Since
presenting our project, we also captured several short videos
of a one month old’s hand and foot (Fig. 2g). At the time of

Fig. 3: Camera poses, point cloud, and bounding sphere
generated from COLMAP and Python visualizer. Camera
poses and bounding sphere is fed into model generation
algorithm.

this report we’ve been unable to proceed with that data but
it’s something we’ll test shortly

C. Point Cloud Generation

Many NeRF and NeRF adjacent techniques utilize known
camera poses and initial point cloud estimates. Like stated
before, we use COLMAP to generate both of these for our
pipeline. We do not directly use the point cloud generate by
COLMAP in our model, but use it to direct the algorithm
to the portion of the scene we want it to optimize around.
We use either a simple 3D plot visualizer or Blender to
view and manipulate a bounding sphere over the point cloud.
Neuralango, out model generator, will only optimize the
area within the bounding sphere. Our approach does not
explicitly use the points within the sphere but many other
techniques do. Gaussian Splatting for example starts with
the point cloud as the initial locations of the gaussians. From
there, the gaussians are split and optimized. When viewing
the bounding sphere for our pipeline, we can also verify the
camera poses are approximately where we expect them to be.
If they are not, a new video needs to be acquired because the
final model will not be accurate enough. Once the sphere is
placed and camera poses verified, this information is fed into
the model generation portion of our pipeline. Fig. 3 shows
an example point cloud, bounding sphere, and camera poses
for the model that is evaluated in Section V and shown in
Fig. 1.

IV. MODEL GENERATION

Model generation is the core idea behind our project. We
tried many techniques to generate an accurate model of a
fist from a simple video. The first we tried is Structure from
Motion. From there we quickly moved onto neural methods.
NeRFStudio [8] is a collection of old and new NeRF projects
built into a single application. From this application we were



Fig. 4: Output of Neuralangelo compared to output of Neus algoirthm. Left) input image. Middle) Neus output. Right)
Neuralangelo output.

able to try a few different NeRFs to generate our models.
Finally, we landed on using Neuralangelo to generate our
models.

A. SfM

Structure from Motion is an ideal place to start for 3D re-
construction. The SfM algorithm generates camera poses and
a sparse point cloud. The sparse point cloud does not contain
enough detail to accurately model 3D objects typically. From
the camera poses, a dense point cloud can be generated. From
the dense point cloud 3D objects can start to form. These
points can then be put into a mesh format to be printed.
The biggest challenge for this method though is when there
are occlusions and other introduced noise sources. Noise can
be introduced from inaccurate camera poses to having short
baselines between camera poses when triangulating points.
All this noise make the 3D reconstructions noisy and not
great models to be 3D printed. Once we discovered this, we
moved onto the NeRF methods.

B. NerfStudio

NeRFStudio is an application that houses a collection
of NeRF projects that pushes forward NeRF research. Re-
searchers can quickly experience and iterate on different
NeRF projects. While NeRFStudio is a worth while project
it still has a long way to go. There are many dependency
issues for each of the NeRF projects that is supports that
need to be resolved. We spent a long time trying to debug
these issues to no avail for many of the projects. For the
projects we were able to successfully run and train with
we had terrible results. Traditional NeRFs do poorly on
3D reconstruction. In many cases, SfM would be the better
solution. The underlying representation of environments in
these NeRFs are not conducive to 3D mesh extraction. More
recent work has proven to be more reliable and accurate at
creating the types of models we are looking for.

C. Neuralangelo

Neuralango was presented at CVPR 2023 and won Time’s
Best invention for 2023. It has made a large splash in the
3D reconstruction world with how much detail this model
can extract from images. Neuralango is built upon multi-
resolution hash encoding, SDF, and numerical gradients.

Each of these ideals work in tandem with each other to
enable coarse-to-fine detail optimization in the algorithm.
The algorithm starts with the basic structures in the envi-
ronment the user has selected. The hash encoding resolution
starts at a large value. This effectively smooths over a large
area. This generates the coarse details of the environment.
As the optimization continues, the hash encoding resolution
becomes finer. As it becomes finer, more detail starts to
appear because the fine details is no longer being smoothed
over. This approach is perfect for capture the large and
small details of a hand or foot. The first epochs of the
optimization roughly captures the outline of a hand, and
then the later epochs slowly captures the wrinkle lines,
finger nails, and even protruding veins. Neuralangelo uses
a lot of VRAM on a GPU to store high resolution hash
encodings while training. It also can take hours to train a
single model. Future work will include optimizing both of
these constraints. This will appear as new code be written
and hyper-parameter tuning. Fig. 4 show a single snippet
from the original Neuralangelo paper at the minute details
that can be recovered the Neuralangelo approach.

D. Model cleanup and Printing

Once our hand or foot model is generated, a small amount
of post processing needs to be performed. We use a 3D mod-
eling software named Blender. Blender is an open source,
community driven modeling package that has been around
for over 30 years. We used it to clean up sharp edges that are
left over artifacts of training. The placement of the bounding
sphere influences what sharp edges are created and how
much post processing needs to be performed. If the bounding
sphere includes an area that had no or insufficient image data
the Neuralangelo algorithm does not know how to optimize
leading to sharp or unusable geometry. We use Blender to
smooth out these edges to prepare to print our models.

The two primary printing techniques are fused deposition
modeling (FDM) and stereolithography (SLA). FDM printing
is the traditional 3D printing method that involves melting
plastic and extruding it in layers to create an object. SLA,
or resin, printing uses a vat of UV light hardening resin and
UV lasers to create objects. FMD printing is considerably
cheaper, easier, and faster to work with, but comes at the cost



Fig. 5: Hand model printed with a FDM printer.

of object resolution. SLA on the other hand is completely
the opposite. It is temperamental and prints slowly but
captures a great amount of detail. We have access to both
types of printers and can provide either service for potential
customers.

V. RESULTS

We have two categories of metrics that we evaluated our
pipeline against. The first is more subjective and evaluates
solely the visual appeal of the final product. The second
evaluates the model loss, VRAM use, and pipeline time use.
We need a pipeline that is fast and efficient to generate lots
of models.

A. Visual

Our final models that we are able to create and print show
off a decent amount of detail. We are able to capture the
creases of skin on the palm of my hand. We are also able
to capture fingernail outlines. If we let the model run long
enough we are able to capture the slight bulge of the veins
on the back of my hand. These fine details are shown in
our SLA print in Fig. 1. When we print using FDM printers
we are able to print at faster speeds but drop some of the
detail as shown in Fig. 5. Either choice still shows off a great
amount of visual detail.

Once the digital files are created for the object that is
being reconstructed the object can be printed as many times
as the user wants. This is a huge improvement over having
a single cast or mold of an object. If the cast or molded
object is ever lost or damaged there is usually no way to
fully recover the priceless object. With our reconstruction
method, we are simply able to reprint a new one. This also
enables multiple people to enjoy the reconstructed object as
well.

B. Pipeline Efficiency

The second metric we evaluated is the training loss pro-
vided by Neuralangelo. Fig. 6 show that our model was

Fig. 6: Total loss of trained model.

optimizing correctly and hadn’t started to overfit the model
because the loss was still decreasing. We have made models
that overfit according to the training loss that led major arti-
facts on the final model that are either unacceptable or needed
a decent amount of post processing to be usable. We are still
trying to find the balance between underfitting and using less
computation time to overfitting and using lots of time. The
model that corresponds to Fig. 6 took approximately 4 hours
of training time to balance model accuracy and training time
without overfitting. Another metric we looked at is how much
VRAM we are using on the GPU. According to the data we
almost used the full 20GBs of VRAM on our Nvidia A4500
GPU. This is not acceptable if this project is to be done at
scale. This will be the first optimization we will look at. We
will see how we can improve the memory footprint or switch
to a similar model that is less accurate but uses less memory.

The final piece of our pipeline that could experience more
optimization that we evaluated is our SfM process. Depend-
ing on the input video, the SfM portion of the project can
take between 5 minutes up to 4 hours to calculate depending
on the quality of the video and its length. Optimizing this
will come down to how we collect short videos. We need a
process that captures enough detail to recover camera poses
and enough views of the object that can be reconstructed.

VI. CONCLUSION

This semester project has been rewarding and challenging
at the same time. We have fought with too many CUDA
dependency issues to exhaustively name. We have learned
that camera poses are more important than what is casually
stated in many NeRF papers. We have learned how to use
Blender. We have learned the invaluable place GPUs play
in speeding up training machine learning models. But most
importantly, we have learned that many people like the idea
of having a printable keepsake of their child or grandchild.
We did not estimate the amount of positive feedback we
would get from the class or others we have shared this idea
with. We will continue to work on this project and run it
through the engineering college’s Student Innovator of the
Year experience. Our pipeline that we created for this project
still needs a lot of optimization to make it work at scale, but
throughout this semester we have been able to get off to a
great start.
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